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1 NETWORK STRUCTURE

As introduced in the main paper, the proposed D-MAE consists
of one Encoder for transforming encoded tokens into the latent
embedding space and one Decoder for predicting the masked token
and completing the 3D skeletal motion. Both the Encoder and the
Decoder are vanilla Transformers [11] consisting of Multi-head
Self Attention Attn blocks and Multilayer Perceptron MLP blocks.
D-MAE takes a masked motion sequence as input. We treat each
joint’s 3D coordinates s € R? as an independent token encoded by
the proposed dual-position encoders (the signal encoder ys for 3D
spatial coordinates s and the context encoder y, for each joint’s
structural and temporal context v € {J, T}, please refer to Eq. 5,6,7
in the main paper). Following [5], a linear layer Enc-to-Dec is used
to bridge the Encoder and the Decoder. To make the final prediction,
the masked tokens are then projected by a linear layer Prediction
to the signal dimension.

Table 1 shows the Transformer encoder-decoder structure. Also
we will release the whole code of our multi-view multi-person
motion capture system in the project page: https://github.com/
HKBU-VSComputing/2022_MM_DMAE-Mocap.

2 TRAINING DETAILS

D-MAE completes the motion sequences via encoding motion sig-
nals in both skeletal-structural and temporal domains. We further
provide the training configurations for its easy reproduction.

Table 2 summarizes the training configurations. Most of the con-
figurations are shared by training and fine-tune processes, without
specific tuning. Due to the flexibility of the D-MAE’s encoding
mechanism, we can simply transfer one skeleton labeling definition
to another definition without any changes on our motion capture
system.

3 ADDITIONAL VISUAL EXAMPLES

We provide additional visual comparisons with Dong et al [3] and
Zhang et al [12] on the Shelf dataset and one of the clip from the BU-
Mocap dataset. We also provide the synthetic video for continuous
evaluation in https://youtu.be/zCOIGwWISol. Note that, we only
train our model on the Shelf dataset, and directly evaluate the whole
system on the BU-Mocap dataset. Without any additional tuning,
our system outperforms than [3, 12] in the qualitative compar-
isons, which also indicates that with the help of the dual directional
encoding, the D-MAE learns how to model the human motion.

* Corresponding author: Jie Chen.

Table 1: The details of the proposed D-MAE network struc-
ture. ‘num’ is short for ‘number’. ‘dim’ is short for ‘dimen-
sion’.

Encoder num
Depth 6
Attn dim 256
Attn head 8
Attn dim per head 64
MLP dim 512
Enc-to-Dec num
In dim 256
Out dim 128
Decoder num
Depth 6
Attn dim 128
Attn head 8
Attn dim per head 64
MLP dim 512
Prediction num
In dim 128
Out dim 3

Table 2: Configurations for training and fine-tune. ¥ We use
the linear Ir scaling rule [4]: i.e., Ir = base_Ir X batch_size/256.

Configuration training fine-tune
optimizer AdamW [8]
optimizer momentum B, B2 = 0.9,0.999
weight decay 0.05
learning rate schedule cosine decay [7]
warmup epochs [4] 30 5
augmentation Normalization, RandomRotation
gradient clipping 0.02 0.005
drop out X

base learning rate T 2e-4 8e-4
batch size 256 128
epoch size 1000 500

As shown in Figure 4, the 3D skeletons reconstructed by [3]
have different colors. The blue skeleton at the first frame is painted
into pink at the second frame. This phenomenon indicates [3] has
weak identification consistency, i.e. during the continuous frames,
[3] reconstructs the same candidate with different identities. [12]
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Table 3: Current records for BU-Mocap dataset. Each of them
captures multi-view multi-person motion with massive in-
teractions and occlusions.

Clip name length (s) actor num. view num. depth IMU

coop-1 120 2 5 v X
coop-2 120 2 5 v X
coop-3 120 4 5 v X
coop-4 120 4 4 v X
coop-5 120 5 5 v v

reconstructs failed on the feet due to limited 2D clues under se-
vere occlusion. Ours can reconstruct well because of the D-MAE’s
completion. The Adaptive Triangulation module first filters the in-
accurate 2D detection. The D-MAE completes the missing 3D parts
via dual directional encoding.

As shown in Figure 5, Dong et al [3] reconstructs 3D poses in the
good skeletal structure while one of the reprojection is misaligned to
its human body. Zhang et al [12] fails to reconstruct 3D poses from
the third frame to the fifth frame. The joint left shoulder of the blue
skeleton is assigned to another skeleton erroneously making the
twisted failure reconstruction. The twisted skeletons usually appear
in the rotation case. When the actor spins, the 3D reconstruction
becomes twisted. Ours performs better than [3, 12] in this scene.

4 FINE-TUNE ON BU-MOCAP

As shown in Table. 3 in the main paper, we further evaluate the gen-
eralization of the proposed D-MAE and compare it with a learning-
based method [6]. Row 3 and 4 demonstrate the result for both of
the two models trained on the Shelf [1] dataset respectively. Row
5 and 6 demonstrate the fine-tune results. We fine-tune models
on the BU-Mocap (70% for training, 30% for testing). Specifically,
we follow [6]’s statement that to use HRNet [10] as the 2D pose
detector. Due to BU-Mocap’s full annotation (all actors in every
frame are labelled), the data is much more sufficient than the Shelf
dataset leading to earlier fitting. Both of ours and [6]’s training
epoch is set to 600. Other configurations are consistent with each
statement.

5 BU-MOCAP DATASET

As the one of our main contributions, the proposed BU-Mocap in-
cludes but is not limited to the following modalities: 1) RGB color
image, 2) depth map, 3) motion trajectory recorded by inertial sen-
sors (inertial measurement units, IMUs), 3) 3D motion coordinate,
4) reconstructed point cloud. Table 3 summarizes the existing mo-
tion clips. As shown in Table 3, 5 clips with total 600 seconds are
provided. The capturing rate is set to 30 frame per second (fps). The
inertial sensor’s recording rate is set to 120 Hz.

Figure 1 demonstrates the shooting set for the BU-Mocap dataset.
We setup 5 RGB cameras [9] to record motion. Before every shoot-
ing, we use a chessboard to get the extrinsic parameter of each
camera. As for the filming script, we invite up to 5 volunteers to
imitate the dancing choreography on the screen. Each clip has its
own dancing style, including Jazz dance, Cha Cha, Free dance and so
on. We design each actor’s appearance, i.e. 5 actors wear different
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Figure 1: Demonstration of the shooting set for the BU-Mocap
dataset. Five Azure Kinect cameras [9] are placed to surround
the capture area. Two monitors are used for motion display.
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Figure 2: Visual examples of the BU-Mocap dataset. Each sub-
figure demonstrates the different actor performance from 2
views.

clothes. For example, actors are asked to wear T-shirts and shorts,
loose jacket and trousers respectively. Figure 2 demonstrate the
capturing scene. Each sub-figure illustrates one of the dancing clips.
The bottom sub-figures are under heavy occlusions and have more
interactions. In the future, we will release it to the public and also
further extend the BU-Mocap dataset.
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Figure 3: Demonstration of the annotation system. The
system is designed for collaborative working. The user-
friendliness UI allows participants labeling keypoints easily.

6 ANNOTATION SYSTEM

To achieve accurate ground-truth, we develop a multi-view multi-
person annotation system (see Figure 3) to manually correct the
wrong 2D detection as well as 3D reconstruction. We first adopt off-
the-shelf 2D human pose estimator [2] to detect 2D poses from each
observation. Then the multi-view multi-person 3D motion capture
framework proposed in the paper is used for 3D motion reconstruc-
tion. Next we reproject those reconstructed 3D motion back to 2D
images. The 2D reprojection is displayed on the annotation system
waiting for correction.

As shown in Figure 3, the user interface (UI) of the annota-
tion system consists of 4 parts: 1) the main canvas, demonstrating
identity-aware keypoints for each candidate. We can easily drag
and delete keypoints on the main canvas; 2) the Re-id panel lying
below the main canvas. This panel is used for changing each can-
didate’s identity; 3) the joint panel lying next to the main canvas.
Each column in the joint panel demonstrates the 2D joint location.
We can modify it by directly typing XY values; 4) the view-switch
panel lying next to the joint panel. We can switch the observing
view of the main canvas by right double-clicking other views on
this panel.
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Figure 4: Visual comparisons on the Shelf dataset. We show 3D poses and its reprojection on the 4th view with 5 continuous
frames (from top to bottom, Dong et al [3], Zhang et al [12], ours(final). The red dotted boxes are highlights for attention.
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Figure 5: Visual comparisons on the BU-Mocap dataset. We show 3D poses and its reprojection on the 3rd view with 5 continuous
frames (from top to bottom, Dong et al [3], Zhang et al [12], ours(final), ground-truth. The red dotted boxes are highlights for
attention.
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